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Why has BLP demand estimation 
become popular in marketing?



Motivation: Demand estimation using aggregate data
Demand estimation is critical element of marketing 

analysis
Value of demand estimation using aggregate data
Marketers often only have access to aggregate data
Even if HH data available, these are not fully representative

Two main challenges in using aggregate data
Heterogeneity: Marketers seek to differentiate products that 

appeal differentially to different segments to reduce 
competition and increase margins; need to account for this
Endogeneity: Researchers typically do not know (or have data) 

all factors that firms offer and consumers value in a product at 
a given time or market, firms account for this in setting 
marketing mix—this creates a potential endogeneity problem



Why is BLP demand estimation popular in marketing?
Berry Levinsohn and Pakes (1995) addresses all three issues
estimates differentiated product demand systems with 

aggregate data
uses discrete choice models with random coefficients 

(heterogeneity)
accounts for researcher unobservables that affect consumer 

choice, and firm’s marketing mix choices, (endogeneity)
BLP gained quick acceptance because demand modelers 

using household scanner data 
Immediately understood the importance of accounting for 

heterogeneity with aggregate data soon after the first papers 
in marketing were published (Sudhir 2001; Chintagunta 2001)

But it took a bit longer to accept the endogeneity issue



What data do we need for 
estimation?



Canonical aggregate market level data
Aggregate “Market” Data 
Longitudinal: one market/store across time (e.g., BLP Ecta

1995/Sudhir Mkt Sci 2001/Chintagunta Mkt Sci 2001)
Cross-sections: multiple markets/stores (e.g., Datta and 

Sudhir 2011)
Panel: multiple markets/stores across time (Nevo Ecta 2001; 

Chintagunta, Singh and Dube QME 2003)
 Typical variables used in estimation
Aggregate quantity
Prices/attributes/instruments
Definition of market size
Distribution of demographics (sometimes)



Typical Data Structure
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Notation
Markets or Periods:                 
Product
Consumer   makes choice                  in market t
 Indirect Utility Function:
 observed product characteristics
 unobserved (to researcher) product characteristics
 price
 “observable” consumer demographics
 unobserved consumer attributes

 Indirect Utility Function:
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Notation
 Indirect Utility Function:


where

Convenient to split the indirect utility into two parts 



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Key Challenges for Estimation with Market Level Data
Heterogeneity:
Recovering heterogeneity parameters without consumer 

data
Not an issue with consumer level data, because we have 

heterogeneity in choices across consumers
Endogeneity: 
 is potentially correlated with price (and other 

marketing mix variables) 
Contrary to earlier conventional wisdom this can be an 

issue with even consumer level data
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Motivation for Addressing Endogeneity
Trajtenberg (JPE 1989) 

famous analysis of 
Body CT scanners 
using nested logit
model

Positive coefficient on 
price—upward sloping 
demand curve
Attributed to omitted 

quality variables



Special Cases: Homogeneous Logit
and Nested Logit



Homogeneous Logit Notation
 Indirect Utility Function:


where

Convenient to split the indirect utility into two parts 

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Homogenous Logit with Aggregate Data
 If we have market share data,

 Normalize 





With homogeneous logit, we can invert shares to get 
mean utility 
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Homogenous Logit with Aggregate Data: 2SLS



 If no endogeneity, we can use OLS
Given endogeneity of price, one can instrument for price 

and use 2SLS
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Homogeneous Logit with aggregate data: GMM
Alternatively, Berry (1994) suggests a GMM approach 

with a set of instruments Z
Step 1: Compute
Let                                  where  

Step 2: GMM with moment conditions: 
 where 
 We have a nice analytical solution

where               
Start with          or                to get initial   estimate
Re-compute                       for new estimate of 
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Why homogeneous logit not great as a demand system
Own Elasticity:

Cross Elasticity:
Bad Properties: 
Own elasticities proportional to price, so conditional on 

share more expensive products tend to be more price 
elastic!! 
BMW328 will be more price elastic than Ford Mustang.

Cross-elasticity of product j, w.r.t. price of product k, is 
dependent only on product k’s price and share
BMW328 and Toyota Corolla will have same cross price 

elasticity with  respect to Honda Civic!!
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Nested Logit with Aggregate Data: Applying GMM
Nested logit provides more flexible elasticity patterns 

Where proxies for intra-group correlation in 
preferences

Even if no price endogeneity, 
we cannot avoid instruments
Additional moments are 

needed to estimate 
The GMM approach will still work, as long as we have 

two or more instruments to create enough identifying 
restrictions—one each for 
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The Canonical BLP Random 
Coefficients model



The Canonical BLP Random Coefficients Logit Model
 Indirect Utility Function:


where

Split the indirect utility into two parts 




Analytical inversion of    no longer feasible
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Elasticities with heterogeneity— better demand system 


Own Elasticity:

Cross Elasticity:
Good Properties
Higher priced products more likely purchased by low ௜

customers—can have lower elasticities
Cross elasticities vary across products—price cut on 

Honda Civic induces more switching from Toyota Corolla 
than from BMW 328
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Logit vs RC logit: the value of heterogeneity (BLP)
With logit, outside 

good captures all 
effects of price 
increase due to IIA

With RC logit, IIA 
problem reduced
Expensive cars 

have less 
substitution to 
outside good



Estimation using market level data: BLP algorithm
1. Draw    (and     if needed) for a set of (say NS=50) 
consumers. Compute initial    based on homogeneous logit.
2. Predicted shares
For given    compute the HH deviations from mean utility

For given mean utility (  ) &   ,compute predicted shares,

3. Contraction Mapping : Given nonlinear parameters   ,   
search for    such that
4. From   , estimate the linear parameters    using an analytical 
formula. Then form the GMM obj function
5. Minimize        over    with Steps 2-4 nested for every   trial 
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An illustrative problem
Code and Data
Data provided in data.csv
Matlab code: Agglogit.m (main program) calls 

AgglogitGMM.m (the function to be minimized)
Problem Definition
J=2 (brands), T=76 (periods)
Variables: price, advertising, 3 quarterly dummies
Cost instruments: 3 for each brand
Heterogeneity only on the 2 brand intercepts and price
Covariance: s s
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Step 1: Simulating HH draws
%Fix these draws outside 
the estimation
w1=randn(NObs1,NCons);
w2=randn(NObs1,NCons);
wp=randn(NObs1,NCons);
%Convert to multivariate 
draws within nonlinear 
parameter estimation
aw1=b(1)*w1+b(2)*w2;
aw2=b(3)*w1;
aw2=b(3)*w1;

Cholesky Decomposition
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Step 2: Computing market shares based on model
 For logit and nested logit, can use analytic formulas
 For random coefficients logit, integrate over the 

heterogeneity by simulation


Where ߥ௜ and ܦ௜, ݅ ൌ 1,… ,ܰܵ are draws from ܨ௩∗(ݒ) and ܨ஽∗(ܦ) 
that are drawn and fixed over optimization

 Simulation variance reduction (see Train Ch. 9)
 Importance sampling: BLP oversamples on draws leading to auto 

purchases, relative to no purchase 
Halton draws (100 Halton draws found better than 1000 random 

draws for mixed logit estimation; Train 2002)
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Step 3: Contraction Mapping to get mean utility ( (ܜ
For logit and nested logit, you can get mean utility 

analytically

For random coefficients, logit, you need a contraction 
mapping, where you iterate till convergence 
(i.e., ௧

௛ାଵ
௧
௛ < Tolerance)
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Steps 2&3:Market Shares and Contraction Mapping
while (Err >= Tol)

de=de1;
sh=zeros(NObs1,1);
psh=zeros(NObs1,1);
%Integrating over consumer heterogeneity
for i=1:1:NCons;

psh=exp(aw(:,i)+awp(:,i)+de); psh=reshape(psh',2,NObs)';
spsh=sum(psh')';
psh(:,1)=psh(:,1)./(1+spsh); psh(:,2)=psh(:,2)./(1+spsh);
sh=sh+reshape(psh',NObs1,1);

end;
%Predicted Share
sh=sh/NCons;
%Adjust delta_jt
de1=de+log(s)-log(sh);
Err=max(abs(de1-de));

end;
delta=de1;



Step 4: Estimate parameters in two steps
A. Given       , estimate    and compute 

 B. Minimize the GMM Objective: 
Where W is the GMM weight matrix

But W is based on . Start with weighting matrix W=I
and iterate on W, based on new estimates. In practice, I 
start with W based on homogeneous logit, when 
estimating random coefficients logit
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Step 4: Linear parameters and GMM objective function
% Analytically estimating linear parameters
blin=inv(xlin'*z*W*z'*xlin)*(xlin'*z*W*z'*delta);

% GMM Objective function over nonlinear parameters
er=delta-xlin*blin;
f=er'*z*W*z'*er;



Step 5: Optimizing over ଶ

Use a nonlinear optimizer to minimize the GMM 
objective function in Step 4
The main file with data setup, homogeneous logit OLS, 

homogeneous logit IV, and calling the nonlinear 
optimizer are in file AggLogit.m

The GMM objective function nesting steps 2-4 are in the 
file AggLogitGMM.m

% Calling the optimizer with appropriate options
[b, fval,exitflag,output,grad,hessian] = fminunc('AgglogitGMM',b0,options);

Standard errors should be computed by standard GMM 
formula (Hansen 1982)



Summary
Why is BLP popular?
Handles aggregate data, heterogeneity and endogeneity

Reviewed estimation algorithms
Homogenous and nested logit reduces to a linear model 

and can be estimated using an analytical formula
Random coefficients logit requires a nested algorithm

Reviewed an illustrative coding example



Summary: Key elements in programming BLP
BLP illustrative example code:
Simulation to integrate over random coefficients 

distribution
Drawing from a multivariate distribution

Contraction mapping 
Linearization of the mean utility to facilitate IV

Generalized Method of Moments
We numerically optimize only over the nonlinear parameters, 

while estimating the linear parameters affecting mean utility 
through an analytical formula (as with homogenous logit)



Session 2



Session 2: Agenda
Contrasting the contraction mapping algorithm with 

the MPEC approach
 Instruments
 Identification
 Improving identification and precision
Adding micro moments
Adding supply moments



Recall: The BLP Random Coefficients Logit Model
 Indirect Utility Function: (Ignore income effects)


where

Split the indirect utility into two parts 

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Estimation using market level data: BLP algorithm
1. Draw    (and     if needed) for a set of (say NS=50) 
consumers. Compute initial    based on homogeneous logit.
2. Predicted shares
For given    compute the HH deviations from mean utility

For given mean utility (  ) &   ,compute predicted shares,

3. Contraction Mapping : Given nonlinear parameters   ,   
search for    such that
4. From   , estimate the linear parameters    using an analytical 
formula. Then form the GMM obj function
5. Minimize        over     with Steps 2-4 nested for every   trial 
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Problem with BLP Contraction Mapping
BLP: Nesting a Contraction mapping for each trial of 

Problems:
Can be slow: For each trial of , we have to do a 

contraction mapping to obtain   . This can be really slow 
if we have poor trial values of 

Unstable if the tolerance levels used in the nesting is too 
high (suggested 10-12)

An alternative approach is to use the MPEC approach 
that avoids the contraction mapping
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MPEC Approach (Dube, Fox and Su, Ecta 2011)
MPEC: Mathematical Programming with Equilibrium 

Constraints
Reduce to a constrained nonlinear programming problem 

You have to search over both 
With J brands and T periods(markets),JT parameters
But no contraction mapping for each trial of ߠ
Nonlinear optimizers can do this effectively for small JT, but 

convergence can be tricky as JT becomes large
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Contrast MPEC with BLP Contraction Mapping
MPEC (Dube, Fox and Su 2011)

BLP: Nesting a contraction mapping for each trial of 
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Choosing Instruments



Choosing instruments
The BLP (and MPEC) estimation procedure is based 

on instruments Z that satisfy the moment condition

 IV’s are needed for:
Moment conditions to identify    (heterogeneity)
Recall nested logit needed instruments even if price were not 

endogenous
Correcting for price (and other marketing mix) 

endogeneity
IV should be correlated with price but not with ߦ௝௧

( | )x = 0jtE Z
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Common Instruments: (1) Product Characteristics
 Own product characteristics (Almost all papers)
These can just identify the linear parameters associated with these 

characteristics in the mean utility 
 Other product characteristics (BLP)
Sum of characteristics of other products produced by firm
Sum of characteristics of competitor products
Sudhir (2001) use sums by product group

 Intuition for instrument validity: other product characteristics 
have no direct impact on consumer utility for product, but 
through competition impacts prices

 Key assumption: Characteristics are chosen before ௝௧ known
Widely used because it is generally available



Common Instruments (2): Cost Shifters
Characteristics entering cost, but not demand 
Generally hard to find
BLP use scale economies argument to use total 

production as a cost instrument
 Input factor prices
Affects costs and thus price, but not directly demand
Often used to explain price differentials across time, but 

often does not vary across brands (e.g., market wages)
If we know production is in different states or countries, we 

can get brand specific variation in factor costs (e.g., Sudhir, 
Chintagunta and Kadiyali (Mkt Sci 2005) use US and 
Japanese factor costs for Kodak and Fuji respectively.



Common Instruments (3): Prices in other markets
 Prices of products in other markets (Nevo 2001; Hausman

1996)
 If there are common cost shocks across markets, then price in 

other markets can be a valid instrument
But how to justify no common demand shocks? (e.g., national 

advertising; seasonality) 



Common Instruments (4): Lagged Characteristics
When current characteristics are simultaneously related to the 

unobservables, one may motivate use of lagged characteristics 
similar to the dynamic panel data literature

 Example: Sweeting (Ecta, 2012) assumes an AR(1) process on 
the unobservables , where 
to justify the moment condition 

 Can lagged prices be a valid instrument?
Not if last week’s promotions drives this week’s unobservable 

(e.g., due to stockpiling, which is unobserved)!!     
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Importance of IV Correction: BLP



Identification



Step back: suppose we have consumer choice data
 Step 1: Estimate        by Simulated ML
 Assuming iid double exponential for 

Note,               , i.e., heterogeneity is identified off differences in 
household choices for same          - not available in market data

 Step 2: Estimate 
 identified based on cross market/time variations
Correction for endogeneity needed even with consumer data
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Variation in aggregate data that allows identification
Some of the identification is due to functional form
But we also need enough variation in product 

characteristics and prices and see shares changing in 
response across different demographics for identification

Across markets, variation in
demographics , choice sets (possibly)

Across time, variation in
choice sets (possibly), demographics (possibly)

To help further in identification
add micro data
add supply model



Variation in some familiar papers
BLP (1995)
National market over time (10 years)
Demographics hardly changes, but choice sets 

(characteristics and prices) change
Identification due to changes in shares due to choice sets

Nevo (2001)
Many local markets, over many weeks
Demographics different across markets, product 

characteristics virtually identical, except prices
Identification comes from changes in shares across 

choice sets and across demographics



Caveats about cross-sectional variation across markets
 Selection Problem: Is ௝௠ affected by market 

characteristics?
 E.g., less fresh vegetables sold at lower prices in poor 

neighborhoods
May need to model selection

 Can distribution of    be systematically different across markets?
 If richer cities have better cycling paths for bikes (a market 

unobservable), distribution of random coefficients for bike 
characteristics may differ across markets (by income)

 allowing for heterogeneity in distributions across markets may be 
necessary.

Caution: identification of heterogeneity is tough with 
aggregate data, so we should not get carried away in 
demanding more complexity in modeling

n
i



Two other ways to improve identification and precision
Add micro data based moments
Add supply moments



Identification: 
Adding Micro Moments



Aggregate data may be augmented with micro data
Consumer Level Data
panel of consumer choice data (Chintagunta and Dube JMR 

2005)
cross-sections of consumer choice

second choice data on cars (BLP, JPE 2004)
Survey of consideration sets (theater, dvd) (Luan and Sudhir, WP 

2006)

Segment Summaries
Quantity/share by demographic groups (Petrin, JPE 2002)
Average demographics of purchasers of good j (Petrin JPE 

2002)
Consideration set size distributions (Albuquerque et al. Mkt

Sci 2009)



Augmenting market data with micro data (e.g., Petrin)
Examples of micro-moments added by Petrin (2002)
Set 1: Price Sensitivity

Set 2: Choice and demographics (Family Size, Age)
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Importance of micro data (Petrin 2002)



Importance of micro data (Petrin 2002)



Identification: 
Adding Supply Moments



Adding a Supply Equation
Adding a supply equation can increase precision of demand 

side estimates
A Bertrand pricing assumption is usually used (BLP); using FOC

Where O is the ownership matrix where Oij=1, if i and j are 
owned by the same firm

Even if Bertrand assumption is incorrect (supply equation  is mis-
specified, say due to dynamics), demand estimates tend to be 
consistent in characteristics based models as 
(1) characteristics based price regressions (hedonics) tend to have good R2

(2) link between margins and elasticity (own and cross) is generally right.
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Adding a Supply Equation (contd…)





Construct the supply errors  as

One can create and stack supply moments using these 
supply errors with cost based instruments (see BLP 
1995; Sudhir 2001)
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Adding a supply equation (contd…)
Supply errors:
Supply moments based on cost side instruments (Zc):

Stack the supply moments over the demand moments:

Since there is a pricing equation for each product
in effect, we double the number of observations (of 

course correlation between equations), 
at the expense of estimating few more cost parameters 
This helps improve the precision of estimates 
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Where to modify earlier code for supply equation… 
while (Err >= Tol)

de=de1;
sh=zeros(NObs1,1);
psh=zeros(NObs1,1);
%Integrating over consumer heterogeneity
for i=1:1:NCons;

psh=exp(aw(:,i)+awp(:,i)+de); psh=reshape(psh',2,NObs)';
spsh=sum(psh')';
psh(:,1)=psh(:,1)./(1+spsh); psh(:,2)=psh(:,2)./(1+spsh);
sh=sh+reshape(psh',NObs1,1);

end;
%Predicted Share
sh=sh/NCons;
%Adjust delta_jt
de1=de+log(s)-log(sh);
Err=max(abs(de1-de));

end;
delta=de1;

1. Compute own and cross price 
elasticity (see next slide for 
formula) for each household 
along with shares

2. Use these to construct 
margins along with delta



Recall: Elasticities with heterogeneity
Own Elasticity:

Cross Elasticity:

h a n
æ ö¶ ÷ç ÷ç= = -÷ç ÷ç¶ ÷çè ø

ò (1 ) ( , )jj j
j i ij ij

j j j

ps s
s s dF D

p p s

h a n
æ ö¶ ÷ç ÷ç= =-÷ç ÷ç¶ ÷çè ø

ò ( , )j j k
jk i ij ik

k k j

s s p
s s dF D

p p s



Where to modify earlier code for supply equation…
% Analytically estimating linear parameters
blin=inv(xlin'*z*W*z'*xlin)*(xlin'*z*W*z'*delta);

% GMM Objective function over nonlinear parameters
er=delta-xlin*blin;
f=er'*z*W*z'*er; 3. Estimate the linear cost 

parameters
4. Construct the supply error 
5. Stack the supply moments 

with appropriate weighting 
matrix in constructing the 
GMM objective function



Exercises
Estimate the model with supply side moments added
Compute the standard errors for the estimated demand 

side parameters
See Appendix to these slides on computing standard 

errors.



Summary
 Session 1:

 Why is BLP so popular in marketing?
 Handles heterogeneity and endogeneity in estimating demand systems with easily 

available aggregate data
 The BLP algorithm and illustrative code

 Simulation based integration, contraction mapping for mean utility, analytical 
formula for linear parameters, numerical optimization for the nonlinear parameters

 Session 2
 MPEC versus BLP Contraction mapping (Nested Fixed Point)
 Instruments
 Identification
 Improving precision through

Micro data based moments
 Supply moments
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% Sample code to illustrate estimation of BLP random coeffients model 
% with aggregate data
% Written by K. Sudhir, Yale SOM
% For the Quantitative Marketing and Structural Econometrics Workshop 
% at Duke University-2013 
 
%Variables for demand equation (y, x) and the instruments (z)
y=log_s_s0;
x=[int p ad qtr];
z=[int cost lad qtr];
 
%Homogeneous logit without endogeneity fix
bOLS=inv(x'*x)*x'*y;
bOLS
 
%Homogeneous logit with endogeneity fix (W=I)
W=eye(size(z,2),size(z,2));
bIV1=inv(x'*z*W*z'*x)*x'*z*W*z'*y;
bIV1
 
%Homogeneous logit with endogeneity fix (W=inv(z'*z)) better than W=I, when
%different instruments have very different numerical  magnitudes; this
%equalizes the relative weights of the instruments in GMM
W=inv(z'*z);
bIV2=inv(x'*z*W*z'*x)*x'*z*W*z'*y;
bIV2
 
%Homogeneous logit with endogeneity fix (W=inv(E(z'ksi*ksi'*z)))
derr=y-x*bIV2;
zderr=z;
for i=1:1:size(z,2);
     zderr(:,i)=z(:,i).*derr;
 end;
W=inv((zderr)'*(zderr));
bIV3=inv(x'*z*W*z'*x)*x'*z*W*z'*y;
bIV3
 
%Heterogeneous logit with endogeneity fix
%Note I draw different 50 individuals for the different markets (time periods) from the 
%same distribution. With markets, this is perfectly logical.
%With time, one could argue we need the same 50 individuals across
%markets. However, since there is no panel structure in  choices across time,
%different individuals across time is also correct.
%The advantage I see with different individuals is that you sample across
% a wider set of households from the distribution
 
NCons=50;
xlin=[int p ad qtr];
w1=randn(NObs1,NCons);
w2=randn(NObs1,NCons);
wp=randn(NObs,NCons);
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wp=(reshape([wp';wp'],NCons,NObs1))';
b0=ones(4,1); 
 
blin=bIV3;
 
options=optimset('Display','iter','TolFun',1e-12,'TolX',1e-12,'MaxIter',2500, 
'MaxFunEvals',5000, 'LargeScale','off', 'HessUpdate', 'dfp');
[b, fval,exitflag,output,grad,hessian] = fminunc('AgglogitGMM',b0,options);
 
 
%Comparing the linear parameters across the different methods
bResults=[bOLS bIV1 bIV2 bIV3 blin]
%Formatted Reporting of the same parameters
horz= ['bOLS' '  bIV-W=I  ' '  bIV-W=zz '  ' bIV-W-ksi*z'     'blin-hetero'];
vert=['Int1 '; 'Int2 ';  'Price';  'Ad   '; 'Q1   ';  'Q2   ';  'Q3   '];
disp(horz)
for i = 1:1: size(vert);
    disp(vert(i,:))
    disp(bResults(i,:))
end;
% The RC Logit Model estimates with both linear (blin) and nonlinear (b) parameters
bResults1=[blin; b];
 
%Formatted Reporting of the same parameters
horz= ['bFull-hetero ' ];
vert=['Int1 '; 'Int2 ';  'Price';  'Ad   '; 'Q1   ';  'Q2   ';  'Q3   '; 'L11  '; 'L12  
'; 'L22  '; 'Sigp ';];
disp(horz)
for i = 1:1: size(vert);
    disp(vert(i,:))
    disp(bResults1(i,:))
end;
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% Sample code to illustrate estimation of BLP random coeffients model 
% Written by K. Sudhir, Yale SOM
% For  Quantitative Marketing & Structural Econometrics Workshop @Duke-2013
% This is code for the GMM objective function that needs to minimized
function f=AgglogitGMM(b)
global w1 w2 wp x y z NCons NObs NObs1 xlin blin W z s blin log_s_s0;
%Step 1: Multiplying fixed Standard Normal draws  by lower triangular Cholesky matrix
% parameters to get the multivariate heterogeneity draws on intercepts and
% prices
aw=w1;
awp=wp;
aw1=b(1)*w1+b(2)*w2;
aw2=b(3)*w1;
%Step 2: Constructing the nonlinear part of the share equation (mu)
% using the heterogeneity draws on intercepts and price coeff
for i=1:1:size(w1,2);
    aw(:,i)=aw1(:,i).*x(:,1)+aw2(:,i).*x(:,2);
    awp(:,i)=b(4)*x(:,3).*wp(:,i);
end;
delta=log_s_s0;
Err=100;
Tol=1e-12;
de1=delta;
% Step 3: Contraction Mapping to get the delta_jt until Tolerance level met
while (Err >= Tol)
    de=de1;
    sh=zeros(NObs1,1);
    psh=zeros(NObs1,1);
    %Obtaining the predicted shares based on model
    for i=1:1:NCons;
        psh=exp(aw(:,i)+awp(:,i)+de);
        psh=reshape(psh',2,NObs)';
        spsh=sum(psh')';
        psh(:,1)=psh(:,1)./(1+spsh);
        psh(:,2)=psh(:,2)./(1+spsh);
        sh=sh+reshape(psh',NObs1,1);
    end;
    sh=sh/NCons;
    %Updating delta_jt based on difference between actual share and 
    %predicted shares
    de1=de+log(s)-log(sh);
    Err=max(abs(de1-de));
end;
delta=de1;
% Step 4: Getting the linear parameters and setting up the objective fn
blin=inv(xlin'*z*W*z'*xlin)*(xlin'*z*W*z'*delta);
ksi=delta-xlin*blin;
% The GMM objective function that will be optimized over to get 
% nonlinear parameters
f=ksi'*z*W*z'*ksi;
 



Estimating Standard Errors for a BLP Model 
K. Sudhir, Yale School of Management 

Prepared for the Quantitative Marketing and Structural Econometrics Conference 
Duke University-2013 

The asymptotic covariance matrix for the GMM estimator is given by (See Cameron and Trivedi, 
2005; or any standard textbook which discusses GMM). 
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needs to be embedded in the code where the simulated shares are calculated. Since these gradients 
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Standard errors are obtained from the square root of the diagonal of GMMV bˆ ˆ( ) . 


