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Why has BLP demand estimation 
become popular in marketing?



Motivation: Demand estimation using aggregate data
Demand estimation is critical element of marketing 

analysis
Value of demand estimation using aggregate data
Marketers often only have access to aggregate data
Even if HH data available, these are not fully representative

Two main challenges in using aggregate data
Heterogeneity: Marketers seek to differentiate products that 

appeal differentially to different segments to reduce 
competition and increase margins; need to account for this
Endogeneity: Researchers typically do not know (or have data) 

all factors that firms offer and consumers value in a product at 
a given time or market, firms account for this in setting 
marketing mix—this creates a potential endogeneity problem



Why is BLP demand estimation popular in marketing?
Berry Levinsohn and Pakes (1995) addresses all three issues
estimates differentiated product demand systems with 

aggregate data
uses discrete choice models with random coefficients 

(heterogeneity)
accounts for researcher unobservables that affect consumer 

choice, and firm’s marketing mix choices, (endogeneity)
BLP gained quick acceptance because demand modelers 

using household scanner data 
Immediately understood the importance of accounting for 

heterogeneity with aggregate data soon after the first papers 
in marketing were published (Sudhir 2001; Chintagunta 2001)

But it took a bit longer to accept the endogeneity issue



What data do we need for 
estimation?



Canonical aggregate market level data
Aggregate “Market” Data 
Longitudinal: one market/store across time (e.g., BLP Ecta

1995/Sudhir Mkt Sci 2001/Chintagunta Mkt Sci 2001)
Cross-sections: multiple markets/stores (e.g., Datta and 

Sudhir 2011)
Panel: multiple markets/stores across time (Nevo Ecta 2001; 

Chintagunta, Singh and Dube QME 2003)
 Typical variables used in estimation
Aggregate quantity
Prices/attributes/instruments
Definition of market size
Distribution of demographics (sometimes)



Typical Data Structure
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Notation
Markets or Periods:                 
Product
Consumer   makes choice                  in market t
 Indirect Utility Function:
 observed product characteristics
 unobserved (to researcher) product characteristics
 price
 “observable” consumer demographics
 unobserved consumer attributes
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Notation
 Indirect Utility Function:


where

Convenient to split the indirect utility into two parts 
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Key Challenges for Estimation with Market Level Data
Heterogeneity:
Recovering heterogeneity parameters without consumer 

data
Not an issue with consumer level data, because we have 

heterogeneity in choices across consumers
Endogeneity: 
 is potentially correlated with price (and other 

marketing mix variables) 
Contrary to earlier conventional wisdom this can be an 

issue with even consumer level data
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Motivation for Addressing Endogeneity
Trajtenberg (JPE 1989) 

famous analysis of 
Body CT scanners 
using nested logit
model

Positive coefficient on 
price—upward sloping 
demand curve
Attributed to omitted 

quality variables



Special Cases: Homogeneous Logit
and Nested Logit



Homogeneous Logit Notation
 Indirect Utility Function:


where

Convenient to split the indirect utility into two parts 
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Homogenous Logit with Aggregate Data
 If we have market share data,

 Normalize 





With homogeneous logit, we can invert shares to get 
mean utility 
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Homogenous Logit with Aggregate Data: 2SLS



 If no endogeneity, we can use OLS
Given endogeneity of price, one can instrument for price 

and use 2SLS
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Homogeneous Logit with aggregate data: GMM
Alternatively, Berry (1994) suggests a GMM approach 

with a set of instruments Z
Step 1: Compute
Let                                  where  

Step 2: GMM with moment conditions: 
 where 
 We have a nice analytical solution

where               
Start with          or                to get initial   estimate
Re-compute                       for new estimate of 
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Why homogeneous logit not great as a demand system
Own Elasticity:

Cross Elasticity:
Bad Properties: 
Own elasticities proportional to price, so conditional on 

share more expensive products tend to be more price 
elastic!! 
BMW328 will be more price elastic than Ford Mustang.

Cross-elasticity of product j, w.r.t. price of product k, is 
dependent only on product k’s price and share
BMW328 and Toyota Corolla will have same cross price 

elasticity with  respect to Honda Civic!!
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Nested Logit with Aggregate Data: Applying GMM
Nested logit provides more flexible elasticity patterns 

Where proxies for intra-group correlation in 
preferences

Even if no price endogeneity, 
we cannot avoid instruments
Additional moments are 

needed to estimate 
The GMM approach will still work, as long as we have 

two or more instruments to create enough identifying 
restrictions—one each for 
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The Canonical BLP Random 
Coefficients model



The Canonical BLP Random Coefficients Logit Model
 Indirect Utility Function:


where

Split the indirect utility into two parts 




Analytical inversion of    no longer feasible
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Elasticities with heterogeneity— better demand system 


Own Elasticity:

Cross Elasticity:
Good Properties
Higher priced products more likely purchased by low 

customers—can have lower elasticities
Cross elasticities vary across products—price cut on 

Honda Civic induces more switching from Toyota Corolla 
than from BMW 328
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Logit vs RC logit: the value of heterogeneity (BLP)
With logit, outside 

good captures all 
effects of price 
increase due to IIA

With RC logit, IIA 
problem reduced
Expensive cars 

have less 
substitution to 
outside good



Estimation using market level data: BLP algorithm
1. Draw    (and     if needed) for a set of (say NS=50) 
consumers. Compute initial    based on homogeneous logit.
2. Predicted shares
For given    compute the HH deviations from mean utility

For given mean utility (  ) &   ,compute predicted shares,

3. Contraction Mapping : Given nonlinear parameters   ,   
search for    such that
4. From   , estimate the linear parameters    using an analytical 
formula. Then form the GMM obj function
5. Minimize        over    with Steps 2-4 nested for every   trial 
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An illustrative problem
Code and Data
Data provided in data.csv
Matlab code: Agglogit.m (main program) calls 

AgglogitGMM.m (the function to be minimized)
Problem Definition
J=2 (brands), T=76 (periods)
Variables: price, advertising, 3 quarterly dummies
Cost instruments: 3 for each brand
Heterogeneity only on the 2 brand intercepts and price
Covariance: s s
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Step 1: Simulating HH draws
%Fix these draws outside 
the estimation
w1=randn(NObs1,NCons);
w2=randn(NObs1,NCons);
wp=randn(NObs1,NCons);
%Convert to multivariate 
draws within nonlinear 
parameter estimation
aw1=b(1)*w1+b(2)*w2;
aw2=b(3)*w1;
aw2=b(3)*w1;

Cholesky Decomposition
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Step 2: Computing market shares based on model
 For logit and nested logit, can use analytic formulas
 For random coefficients logit, integrate over the 

heterogeneity by simulation


Where and , 1,… , are draws from ∗( ) and ∗( ) 
that are drawn and fixed over optimization

 Simulation variance reduction (see Train Ch. 9)
 Importance sampling: BLP oversamples on draws leading to auto 

purchases, relative to no purchase 
Halton draws (100 Halton draws found better than 1000 random 

draws for mixed logit estimation; Train 2002)
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Step 3: Contraction Mapping to get mean utility ( )
For logit and nested logit, you can get mean utility 

analytically

For random coefficients, logit, you need a contraction 
mapping, where you iterate till convergence 
(i.e., < Tolerance)
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Steps 2&3:Market Shares and Contraction Mapping
while (Err >= Tol)

de=de1;
sh=zeros(NObs1,1);
psh=zeros(NObs1,1);
%Integrating over consumer heterogeneity
for i=1:1:NCons;

psh=exp(aw(:,i)+awp(:,i)+de); psh=reshape(psh',2,NObs)';
spsh=sum(psh')';
psh(:,1)=psh(:,1)./(1+spsh); psh(:,2)=psh(:,2)./(1+spsh);
sh=sh+reshape(psh',NObs1,1);

end;
%Predicted Share
sh=sh/NCons;
%Adjust delta_jt
de1=de+log(s)-log(sh);
Err=max(abs(de1-de));

end;
delta=de1;



Step 4: Estimate parameters in two steps
A. Given       , estimate    and compute 

 B. Minimize the GMM Objective: 
Where W is the GMM weight matrix

But W is based on . Start with weighting matrix W=I
and iterate on W, based on new estimates. In practice, I 
start with W based on homogeneous logit, when 
estimating random coefficients logit
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Step 4: Linear parameters and GMM objective function
% Analytically estimating linear parameters
blin=inv(xlin'*z*W*z'*xlin)*(xlin'*z*W*z'*delta);

% GMM Objective function over nonlinear parameters
er=delta-xlin*blin;
f=er'*z*W*z'*er;



Step 5: Optimizing over 
Use a nonlinear optimizer to minimize the GMM 

objective function in Step 4
The main file with data setup, homogeneous logit OLS, 

homogeneous logit IV, and calling the nonlinear 
optimizer are in file AggLogit.m

The GMM objective function nesting steps 2-4 are in the 
file AggLogitGMM.m

% Calling the optimizer with appropriate options
[b, fval,exitflag,output,grad,hessian] = fminunc('AgglogitGMM',b0,options);

Standard errors should be computed by standard GMM 
formula (Hansen 1982)



Summary
Why is BLP popular?
Handles aggregate data, heterogeneity and endogeneity

Reviewed estimation algorithms
Homogenous and nested logit reduces to a linear model 

and can be estimated using an analytical formula
Random coefficients logit requires a nested algorithm

Reviewed an illustrative coding example



Summary: Key elements in programming BLP
BLP illustrative example code:
Simulation to integrate over random coefficients 

distribution
Drawing from a multivariate distribution

Contraction mapping 
Linearization of the mean utility to facilitate IV

Generalized Method of Moments
We numerically optimize only over the nonlinear parameters, 

while estimating the linear parameters affecting mean utility 
through an analytical formula (as with homogenous logit)



Session 2



Session 2: Agenda
Contrasting the contraction mapping algorithm with 

the MPEC approach
 Instruments
 Identification
 Improving identification and precision
Adding micro moments
Adding supply moments



Recall: The BLP Random Coefficients Logit Model
 Indirect Utility Function: (Ignore income effects)


where

Split the indirect utility into two parts 
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Estimation using market level data: BLP algorithm
1. Draw    (and     if needed) for a set of (say NS=50) 
consumers. Compute initial    based on homogeneous logit.
2. Predicted shares
For given    compute the HH deviations from mean utility

For given mean utility (  ) &   ,compute predicted shares,

3. Contraction Mapping : Given nonlinear parameters   ,   
search for    such that
4. From   , estimate the linear parameters    using an analytical 
formula. Then form the GMM obj function
5. Minimize        over     with Steps 2-4 nested for every   trial 
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Problem with BLP Contraction Mapping
BLP: Nesting a Contraction mapping for each trial of 

Problems:
Can be slow: For each trial of , we have to do a 

contraction mapping to obtain   . This can be really slow 
if we have poor trial values of 

Unstable if the tolerance levels used in the nesting is too 
high (suggested 10-12)

An alternative approach is to use the MPEC approach 
that avoids the contraction mapping
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MPEC Approach (Dube, Fox and Su, Ecta 2011)
MPEC: Mathematical Programming with Equilibrium 

Constraints
Reduce to a constrained nonlinear programming problem 

You have to search over both 
With J brands and T periods(markets),JT parameters
But no contraction mapping for each trial of 
Nonlinear optimizers can do this effectively for small JT, but 

convergence can be tricky as JT becomes large
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Contrast MPEC with BLP Contraction Mapping
MPEC (Dube, Fox and Su 2011)

BLP: Nesting a contraction mapping for each trial of 
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Choosing Instruments



Choosing instruments
The BLP (and MPEC) estimation procedure is based 

on instruments Z that satisfy the moment condition

 IV’s are needed for:
Moment conditions to identify    (heterogeneity)
Recall nested logit needed instruments even if price were not 

endogenous
Correcting for price (and other marketing mix) 

endogeneity
IV should be correlated with price but not with 
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Common Instruments: (1) Product Characteristics
 Own product characteristics (Almost all papers)
These can just identify the linear parameters associated with these 

characteristics in the mean utility 
 Other product characteristics (BLP)
Sum of characteristics of other products produced by firm
Sum of characteristics of competitor products
Sudhir (2001) use sums by product group

 Intuition for instrument validity: other product characteristics 
have no direct impact on consumer utility for product, but 
through competition impacts prices

 Key assumption: Characteristics are chosen before known
Widely used because it is generally available



Common Instruments (2): Cost Shifters
Characteristics entering cost, but not demand 
Generally hard to find
BLP use scale economies argument to use total 

production as a cost instrument
 Input factor prices
Affects costs and thus price, but not directly demand
Often used to explain price differentials across time, but 

often does not vary across brands (e.g., market wages)
If we know production is in different states or countries, we 

can get brand specific variation in factor costs (e.g., Sudhir, 
Chintagunta and Kadiyali (Mkt Sci 2005) use US and 
Japanese factor costs for Kodak and Fuji respectively.



Common Instruments (3): Prices in other markets
 Prices of products in other markets (Nevo 2001; Hausman

1996)
 If there are common cost shocks across markets, then price in 

other markets can be a valid instrument
But how to justify no common demand shocks? (e.g., national 

advertising; seasonality) 



Common Instruments (4): Lagged Characteristics
When current characteristics are simultaneously related to the 

unobservables, one may motivate use of lagged characteristics 
similar to the dynamic panel data literature

 Example: Sweeting (Ecta, 2012) assumes an AR(1) process on 
the unobservables , where 
to justify the moment condition 

 Can lagged prices be a valid instrument?
Not if last week’s promotions drives this week’s unobservable 

(e.g., due to stockpiling, which is unobserved)!!     
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Importance of IV Correction: BLP



Identification



Step back: suppose we have consumer choice data
 Step 1: Estimate        by Simulated ML
 Assuming iid double exponential for 

Note,               , i.e., heterogeneity is identified off differences in 
household choices for same          - not available in market data

 Step 2: Estimate 
 identified based on cross market/time variations
Correction for endogeneity needed even with consumer data
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Variation in aggregate data that allows identification
Some of the identification is due to functional form
But we also need enough variation in product 

characteristics and prices and see shares changing in 
response across different demographics for identification

Across markets, variation in
demographics , choice sets (possibly)

Across time, variation in
choice sets (possibly), demographics (possibly)

To help further in identification
add micro data
add supply model



Variation in some familiar papers
BLP (1995)
National market over time (10 years)
Demographics hardly changes, but choice sets 

(characteristics and prices) change
Identification due to changes in shares due to choice sets

Nevo (2001)
Many local markets, over many weeks
Demographics different across markets, product 

characteristics virtually identical, except prices
Identification comes from changes in shares across 

choice sets and across demographics



Caveats about cross-sectional variation across markets
 Selection Problem: Is affected by market 

characteristics?
 E.g., less fresh vegetables sold at lower prices in poor 

neighborhoods
May need to model selection

 Can distribution of    be systematically different across markets?
 If richer cities have better cycling paths for bikes (a market 

unobservable), distribution of random coefficients for bike 
characteristics may differ across markets (by income)

 allowing for heterogeneity in distributions across markets may be 
necessary.

Caution: identification of heterogeneity is tough with 
aggregate data, so we should not get carried away in 
demanding more complexity in modeling

n
i



Two other ways to improve identification and precision
Add micro data based moments
Add supply moments



Identification: 
Adding Micro Moments



Aggregate data may be augmented with micro data
Consumer Level Data
panel of consumer choice data (Chintagunta and Dube JMR 

2005)
cross-sections of consumer choice

second choice data on cars (BLP, JPE 2004)
Survey of consideration sets (theater, dvd) (Luan and Sudhir, WP 

2006)

Segment Summaries
Quantity/share by demographic groups (Petrin, JPE 2002)
Average demographics of purchasers of good j (Petrin JPE 

2002)
Consideration set size distributions (Albuquerque et al. Mkt

Sci 2009)



Augmenting market data with micro data (e.g., Petrin)
Examples of micro-moments added by Petrin (2002)
Set 1: Price Sensitivity

Set 2: Choice and demographics (Family Size, Age)
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Importance of micro data (Petrin 2002)



Importance of micro data (Petrin 2002)



Identification: 
Adding Supply Moments



Adding a Supply Equation
Adding a supply equation can increase precision of demand 

side estimates
A Bertrand pricing assumption is usually used (BLP); using FOC

Where O is the ownership matrix where Oij=1, if i and j are 
owned by the same firm

Even if Bertrand assumption is incorrect (supply equation  is mis-
specified, say due to dynamics), demand estimates tend to be 
consistent in characteristics based models as 
(1) characteristics based price regressions (hedonics) tend to have good R2

(2) link between margins and elasticity (own and cross) is generally right.

...
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Adding a Supply Equation (contd…)





Construct the supply errors  as

One can create and stack supply moments using these 
supply errors with cost based instruments (see BLP 
1995; Sudhir 2001)
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Adding a supply equation (contd…)
Supply errors:
Supply moments based on cost side instruments (Zc):

Stack the supply moments over the demand moments:

Since there is a pricing equation for each product
in effect, we double the number of observations (of 

course correlation between equations), 
at the expense of estimating few more cost parameters 
This helps improve the precision of estimates 
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Where to modify earlier code for supply equation… 
while (Err >= Tol)

de=de1;
sh=zeros(NObs1,1);
psh=zeros(NObs1,1);
%Integrating over consumer heterogeneity
for i=1:1:NCons;

psh=exp(aw(:,i)+awp(:,i)+de); psh=reshape(psh',2,NObs)';
spsh=sum(psh')';
psh(:,1)=psh(:,1)./(1+spsh); psh(:,2)=psh(:,2)./(1+spsh);
sh=sh+reshape(psh',NObs1,1);

end;
%Predicted Share
sh=sh/NCons;
%Adjust delta_jt
de1=de+log(s)-log(sh);
Err=max(abs(de1-de));

end;
delta=de1;

1. Compute own and cross price 
elasticity (see next slide for 
formula) for each household 
along with shares

2. Use these to construct 
margins along with delta



Recall: Elasticities with heterogeneity
Own Elasticity:

Cross Elasticity:
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Where to modify earlier code for supply equation…
% Analytically estimating linear parameters
blin=inv(xlin'*z*W*z'*xlin)*(xlin'*z*W*z'*delta);

% GMM Objective function over nonlinear parameters
er=delta-xlin*blin;
f=er'*z*W*z'*er; 3. Estimate the linear cost 

parameters
4. Construct the supply error 
5. Stack the supply moments 

with appropriate weighting 
matrix in constructing the 
GMM objective function



Exercises
Estimate the model with supply side moments added
Compute the standard errors for the estimated demand 

side parameters
See Appendix to these slides on computing standard 

errors.



Summary
 Session 1:

 Why is BLP so popular in marketing?
 Handles heterogeneity and endogeneity in estimating demand systems with easily 

available aggregate data
 The BLP algorithm and illustrative code

 Simulation based integration, contraction mapping for mean utility, analytical 
formula for linear parameters, numerical optimization for the nonlinear parameters

 Session 2
 MPEC versus BLP Contraction mapping (Nested Fixed Point)
 Instruments
 Identification
 Improving precision through

Micro data based moments
 Supply moments
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% Sample code to illustrate estimation of BLP random coeffients model 
% with aggregate data
% Written by K. Sudhir, Yale SOM
% For the Quantitative Marketing and Structural Econometrics Workshop 
% at Duke University-2013 
 
%Variables for demand equation (y, x) and the instruments (z)
y=log_s_s0;
x=[int p ad qtr];
z=[int cost lad qtr];
 
%Homogeneous logit without endogeneity fix
bOLS=inv(x'*x)*x'*y;
bOLS
 
%Homogeneous logit with endogeneity fix (W=I)
W=eye(size(z,2),size(z,2));
bIV1=inv(x'*z*W*z'*x)*x'*z*W*z'*y;
bIV1
 
%Homogeneous logit with endogeneity fix (W=inv(z'*z)) better than W=I, when
%different instruments have very different numerical  magnitudes; this
%equalizes the relative weights of the instruments in GMM
W=inv(z'*z);
bIV2=inv(x'*z*W*z'*x)*x'*z*W*z'*y;
bIV2
 
%Homogeneous logit with endogeneity fix (W=inv(E(z'ksi*ksi'*z)))
derr=y-x*bIV2;
zderr=z;
for i=1:1:size(z,2);
     zderr(:,i)=z(:,i).*derr;
 end;
W=inv((zderr)'*(zderr));
bIV3=inv(x'*z*W*z'*x)*x'*z*W*z'*y;
bIV3
 
%Heterogeneous logit with endogeneity fix
%Note I draw different 50 individuals for the different markets (time periods) from the 
%same distribution. With markets, this is perfectly logical.
%With time, one could argue we need the same 50 individuals across
%markets. However, since there is no panel structure in  choices across time,
%different individuals across time is also correct.
%The advantage I see with different individuals is that you sample across
% a wider set of households from the distribution
 
NCons=50;
xlin=[int p ad qtr];
w1=randn(NObs1,NCons);
w2=randn(NObs1,NCons);
wp=randn(NObs,NCons);
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wp=(reshape([wp';wp'],NCons,NObs1))';
b0=ones(4,1); 
 
blin=bIV3;
 
options=optimset('Display','iter','TolFun',1e-12,'TolX',1e-12,'MaxIter',2500, 
'MaxFunEvals',5000, 'LargeScale','off', 'HessUpdate', 'dfp');
[b, fval,exitflag,output,grad,hessian] = fminunc('AgglogitGMM',b0,options);
 
 
%Comparing the linear parameters across the different methods
bResults=[bOLS bIV1 bIV2 bIV3 blin]
%Formatted Reporting of the same parameters
horz= ['bOLS' '  bIV-W=I  ' '  bIV-W=zz '  ' bIV-W-ksi*z'     'blin-hetero'];
vert=['Int1 '; 'Int2 ';  'Price';  'Ad   '; 'Q1   ';  'Q2   ';  'Q3   '];
disp(horz)
for i = 1:1: size(vert);
    disp(vert(i,:))
    disp(bResults(i,:))
end;
% The RC Logit Model estimates with both linear (blin) and nonlinear (b) parameters
bResults1=[blin; b];
 
%Formatted Reporting of the same parameters
horz= ['bFull-hetero ' ];
vert=['Int1 '; 'Int2 ';  'Price';  'Ad   '; 'Q1   ';  'Q2   ';  'Q3   '; 'L11  '; 'L12  
'; 'L22  '; 'Sigp ';];
disp(horz)
for i = 1:1: size(vert);
    disp(vert(i,:))
    disp(bResults1(i,:))
end;
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% Sample code to illustrate estimation of BLP random coeffients model 
% Written by K. Sudhir, Yale SOM
% For  Quantitative Marketing & Structural Econometrics Workshop @Duke-2013
% This is code for the GMM objective function that needs to minimized
function f=AgglogitGMM(b)
global w1 w2 wp x y z NCons NObs NObs1 xlin blin W z s blin log_s_s0;
%Step 1: Multiplying fixed Standard Normal draws  by lower triangular Cholesky matrix
% parameters to get the multivariate heterogeneity draws on intercepts and
% prices
aw=w1;
awp=wp;
aw1=b(1)*w1+b(2)*w2;
aw2=b(3)*w1;
%Step 2: Constructing the nonlinear part of the share equation (mu)
% using the heterogeneity draws on intercepts and price coeff
for i=1:1:size(w1,2);
    aw(:,i)=aw1(:,i).*x(:,1)+aw2(:,i).*x(:,2);
    awp(:,i)=b(4)*x(:,3).*wp(:,i);
end;
delta=log_s_s0;
Err=100;
Tol=1e-12;
de1=delta;
% Step 3: Contraction Mapping to get the delta_jt until Tolerance level met
while (Err >= Tol)
    de=de1;
    sh=zeros(NObs1,1);
    psh=zeros(NObs1,1);
    %Obtaining the predicted shares based on model
    for i=1:1:NCons;
        psh=exp(aw(:,i)+awp(:,i)+de);
        psh=reshape(psh',2,NObs)';
        spsh=sum(psh')';
        psh(:,1)=psh(:,1)./(1+spsh);
        psh(:,2)=psh(:,2)./(1+spsh);
        sh=sh+reshape(psh',NObs1,1);
    end;
    sh=sh/NCons;
    %Updating delta_jt based on difference between actual share and 
    %predicted shares
    de1=de+log(s)-log(sh);
    Err=max(abs(de1-de));
end;
delta=de1;
% Step 4: Getting the linear parameters and setting up the objective fn
blin=inv(xlin'*z*W*z'*xlin)*(xlin'*z*W*z'*delta);
ksi=delta-xlin*blin;
% The GMM objective function that will be optimized over to get 
% nonlinear parameters
f=ksi'*z*W*z'*ksi;
 



Estimating Standard Errors for a BLP Model 
K. Sudhir, Yale School of Management 

Prepared for the Quantitative Marketing and Structural Econometrics Conference 
Duke University-2013 

The asymptotic covariance matrix for the GMM estimator is given by (See Cameron and Trivedi, 
2005; or any standard textbook which discusses GMM). 
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ˆ( ( ) needs to be computed as an integral over the consumer heterogeneity, and therefore 

needs to be embedded in the code where the simulated shares are calculated. Since these gradients 
are not needed in the estimation, it should be computed outside the estimation loops. 
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Standard errors are obtained from the square root of the diagonal of GMMV bˆ ˆ( ) . 


